
57

Factorization Machines with libFM

STEFFEN RENDLE, University of Konstanz

Factorization approaches provide high accuracy in several important prediction problems, for example, rec-
ommender systems. However, applying factorization approaches to a new prediction problem is a nontrivial
task and requires a lot of expert knowledge. Typically, a new model is developed, a learning algorithm is
derived, and the approach has to be implemented.

Factorization machines (FM) are a generic approach since they can mimic most factorization models just
by feature engineering. This way, factorization machines combine the generality of feature engineering with
the superiority of factorization models in estimating interactions between categorical variables of large do-
main. LIBFM is a software implementation for factorization machines that features stochastic gradient de-
scent (SGD) and alternating least-squares (ALS) optimization, as well as Bayesian inference using Markov
Chain Monto Carlo (MCMC). This article summarizes the recent research on factorization machines both in
terms of modeling and learning, provides extensions for the ALS and MCMC algorithms, and describes the
software tool LIBFM.

Categories and Subject Descriptors: I.2.6 [Artificial Intelligence]: Learning—Parameter learning; I.5.2
[Pattern Recognition]: Design Methodology—Classifier design and evaluation; H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval—Information filtering

General Terms: Algorithms, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Factorization model, matrix factorization, tensor factorization, recom-
mender system, collaborative filtering, factorization machine

ACM Reference Format:
Rendle, S. 2012. Factorization machines with libFM. ACM Trans. Intell. Syst. Technol. 3, 3, Article 57
(May 2012), 22 pages.
DOI = 10.1145/2168752.2168771 http://doi.acm.org/10.1145/2168752.2168771

1. INTRODUCTION

Recently, factorization models have attracted a lot of research in the fields of in-
telligent information systems and machine learning. They have shown excellent
prediction capabilities in several important applications, for example, recommender
systems. The most well studied factorization model is matrix factorization [Srebro
and Jaakkola 2003], which allows us to predict the relation between two categorical
variables. Tensor factorization models are an extension for relations over several
categorical variables; among the proposed tensor factorization approaches are Tucker
Decomposition [Tucker 1966], Parallel Factor Analysis [Harshman 1970], or Pairwise
Interaction Tensor factorization [Rendle and Schmidt-Thieme 2010]. For specific
tasks, specialized factorization models have been proposed that take noncategorical
variables into account, for example, SVD++ [Koren 2008], STE [Ma et al. 2011], FPMC

Author’s address: S. Rendle, Social Network Analysis, University of Konstanz; email:
steffen.rendle@uni-konstanz.de.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of
this work in other works requires prior specific permission and/or a fee. Permissions may be requested from
the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 2157-6904/2012/05-ART57 $10.00

DOI 10.1145/2168752.2168771 http://doi.acm.org/10.1145/2168752.2168771

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

57:2 S. Rendle

[Rendle et al. 2010] (for a set categorical variable), timeSVD++ [Koren 2009b], and
BPTF [Xiong et al. 2010] (for an additional numerical variable). For the basic matrix
factorization model, many learning and inference approaches have been studied—
among them, (stochastic) gradient descent, alternating least-squares (e.g., [Pilászy
et al. 2010]), variational Bayes [Lim and Teh 2007], and Markov Chain Monto Carlo
(MCMC) inference [Salakhutdinov and Mnih 2008a]. However, for more complex
factorization models, only the most simple learning method of gradient descent is
mostly available.

Even though factorization models have a high prediction quality in many applica-
tions, it is nontrivial to work with them. For each problem that cannot be described
with categorical variables, a new specialized model has to be derived, and a learning
algorithm has to be developed and implemented. This is very time-consuming, error-
prone, and only applicable for experts in factorization models.

On the other hand, in practice, the typical approach in machine learning is to de-
scribe data with feature vectors (a preprocessing step aka feature engineering) and to
apply a standard tool for example, LIBSVM [Chang and Lin 2011] for support vector
machines, a toolbox such as Weka [Hall et al. 2009], or a simple linear regression tool.
This approach is easy and applicable even for users without in-depth knowledge about
the underlying machine-learning models and inference mechanisms.

In this article, factorization machines (FM) [Rendle 2010] are presented. FMs com-
bine the high-prediction accuracy of factorization models with the flexibility of feature
engineering. The input data for FMs is described with real-valued features, exactly
like in other machine-learning approaches such as linear regression, support vector
machines, etc. However, the internal model of FMs uses factorized interactions be-
tween variables, and thus, it shares with other factorization models the high predic-
tion quality in sparse settings, like in recommender systems. It has been shown that
FMs can mimic most factorization models just by feature engineering [Rendle 2010].
This article summarizes the recent research on FMs, including learning algorithms
based on stochastic gradient descent, alternating least-squares, and Bayesian infer-
ence using MCMC. FMs and all presented algorithms are available in the publicly
available software tool LIBFM. With LIBFM, applying factorization models is as easy
as applying standard tools, such as SVMs or linear regression.

The article is structured as follows: (1) the FM model and its learning algorithms
that are available in LIBFM are introduced; (2) several examples, for input data are
given, and the relation to specialized factorization models is shown; (3) the LIBFM
software is briefly introduced; and (4) experiments are conducted.

2. FACTORIZATION MACHINE MODEL

Let us assume that the data of a prediction problem is described by a design matrix
X ∈ R

n×p, where the ith row xi ∈ R
p of X describes one case with p real-valued

variables and where yi is the prediction target of the ith case (see Figure 1 for an ex-
ample). Alternatively, one can describe this setting as a set S of tuples (x, y), where
(again) x ∈ R

p is a feature vector and y is its corresponding target. Such a represen-
tation with data matrices and feature vectors is common in many machine-learning
approaches, for example, in linear regression or support vector machines (SVM).

Factorization machines (FM) [Rendle 2010] model all nested interactions up to order
d between the p input variables in x using factorized interaction parameters. The
factorization machine (FM) model of order d = 2 is defined as

ŷ(x) := w0 +
p∑

j=1

w j x j +
p∑

j=1

p∑
j ′= j+1

x j x j ′

k∑
f=1

v j, f v j ′, f , (1)

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

Factorization Machines with libFM 57:3

Fig. 1. Example (from Rendle [2010]) for representing a recommender problem with real valued feature
vectors x. Every row represents a feature vector xi with its corresponding target yi. For easier interpreta-
tion, the features are grouped into indicators for the active user (blue), active item (red), other movies rated
by the same user (orange), the time in months (green), and the last movie rated (brown).

where k is the dimensionality of the factorization and the model parameters � =
{w0, w1, . . . , wp, v1,1, . . . vp,k} are

w0 ∈ R, w ∈ R
p, V ∈ R

p×k. (2)

The first part of the FM model contains the unary interactions of each input variable
x j with the target—exactly as in a linear regression model. The second part with the
two nested sums contains all pairwise interactions of input variables, that is, x j x j ′ .
The important difference to standard polynomial regression is that the effect of the
interaction is not modeled by an independent parameter wj, j but with a factorized
parametrization wj, j ≈ 〈v j, v j ′ 〉 =

∑k
f=1 v j, f v j ′, f which corresponds to the assumption

that the effect of pairwise interactions has a low rank. This allows FMs to estimate re-
liable parameters even in highly sparse data where standard models fail. The relation
of FMs to standard machine-learning models is discussed in more detail in Section 4.3.

In Section 4, it will also be shown how FMs can mimic other well known factoriza-
tion models, including matrix factorization, SVD++, FPMC, timeSVD, etc.

Complexity. Let Nz be the number of nonzero elements in a matrix X or vector x.

Nz(X) :=
∑

i

∑
j

δ(xi, j �= 0), (3)

where δ is the indicator function

δ(b) :=
{

1, if b is true
0, if b is false

. (4)

The FM model in Equation (1) can be computed in O(k Nz(x)) because it is equivalent
[Rendle 2010] to

ŷ(x) = w0 +
p∑

j=1

w j x j +
1
2

k∑
f=1

⎡
⎢⎣
⎛
⎝ p∑

j=1

v j, f x j

⎞
⎠2

−
p∑

j=1

v2
j, f x2

j

⎤
⎥⎦ . (5)

The number of model parameters |�| of an FM is 1 + p + k p and thus linear in the
number of predictor variables (= size of the input feature vector) and linear in the size
of the factorization k.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

57:4 S. Rendle

Multilinearity. An appealing property of FMs is multilinearity, that is, for each model
parameter θ ∈ �, the FM is a linear combination of two functions gθ and hθ that are
independent of the value of θ [Rendle et al. 2011].

ŷ(x) = gθ (x) + θ hθ (x) ∀θ ∈ �, (6)

with

hθ (x) =
∂ ŷ(x)
∂θ

=

⎧⎨
⎩

1, if θ is w0

xl, if θ is wl

xl
∑

j�=l v j, f x j, if θ is vl, f

. (7)

The definition of gθ is omitted because in the following it is never used directly. If its
value should be computed, the equation gθ (x) = ŷ(x)− θ hθ (x) will be used instead.

Expressiveness. The FM model can express any pairwise interaction, provided that k
is chosen large enough. This follows from the fact that any symmetric positive semidef-
inite matrix W can be decomposed into V Vt (e.g., Cholesky decomposition). Let W be
any pairwise interaction matrix that should express the interactions between two dis-
tinct variables in an FM. W is symmetric, and as the FM does not use the diagonal
elements (because j ′ > j in Eq. (1)), any value—and especially also arbitrary large
values—for the diagonal elements are possible, which will make W positive semidefi-
nite.

Please note that this is a theoretical statement about the expressiveness. In prac-
tice, k 	 p, because the advantage of FMs is the possibility to use a low-rank ap-
proximation of W , and thus, FMs can estimate interaction parameters even in highly
sparse data—see Section 4.3 for a comparison to polynomial regression which uses the
full matrix W for modeling interactions.

Higher-Order FMs. The FM model of order d = 2 (Eq. (1)) can be extended by fac-
torizing ternary and higher-order variable interactions. The higher-order FM model
[Rendle 2010] reads

ŷ(x) := w0 +
p∑

j=1

w j x j +
d∑

l=2

p∑
j1=1

. . .

p∑
jd= jd−1+1

(
l∏

i=1

x ji

) kl∑
f=1

l∏
i=1

v ji, f , (8)

with model parameters

w0 ∈ R, w ∈ R
p, ∀l ∈ {2, . . . , d} : Vl ∈ R

p×kl . (9)

Also for higher-order interactions, the nested sums in Eq. (8) can be decomposed for
a more efficient computation. In the remainder of this article, we will deal only with
second order FMs because in sparse settings—where factorization models are espe-
cially appealing—typically higher-order interactions are hard to estimate [Rendle and
Schmidt-Thieme 2010]. Nevertheless, most formulas and algorithms can be transfered
directly to higher-order FMs, as they share the property of multilinearity with second-
order FMs.

3. LEARNING FACTORIZATION MACHINES

Three learning methods have been proposed for FMs: stochastic gradient descent
(SGD) [Rendle 2010], alternating least-squares (ALS) [Rendle et al. 2011], and Markov
Chain Monte Carlo (MCMC) inference [Freudenthaler et al. 2011]. All three of them
are available in LIBFM.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

Factorization Machines with libFM 57:5

3.1. Optimization Tasks

Optimality of model parameters is usually defined with a loss function l where the task
is to minimize the sum of losses over the observed data S.

OPT(S) := argmin
�

∑
(x,y)∈S

l(ŷ(x|�), y). (10)

Note that we add the model parameters � to the model equation and write ŷ(x|�)
when we want to stress that ŷ depends on a certain choice of �. Depending on the
task, a loss function can be chosen. For example, for regression least-squares loss,

lLS(y1, y2) := (y1 − y2)2, (11)

or for binary classification (y ∈ {−1, 1}),
lC(y1, y2) := − ln σ (y1 y2), (12)

where σ (x) = 1
1+e−x is the sigmoid/ logistic function.

FMs usually have a large number of model parameters �—especially if k is chosen
large enough. This makes them prone to overfitting. To overcome this, typically L2
regularization is applied, which can be motivated by maximum-margin [Srebro et al.
2005] or Tikhonov regularization.

OPTREG(S, λ) := argmin
�

⎛
⎝ ∑

(x,y)∈S

l(ŷ(x|�), y) +
∑
θ∈�

λθθ
2

⎞
⎠ , (13)

where λθ ∈ R
+ is the regularization value for the model parameter θ . It makes sense to

use individual regularization parameters for different parts of the model. In LIBFM,
model parameters can be grouped—for example, one group for the parameters describ-
ing the users, one group for the items, one for time, etc. (see Figure 1 for an example
of groups)—and each group uses an independent regularization value. Moreover, each
factorization layer f ∈ {1, . . . , k} as well as the unary regression coefficients w and w0
can have an individual regularization (again with groups). In total, the regularization
structure of LIBFM is

λ0, λw
π , λv

f,π , ∀π ∈ {1, . . . ,	},∀ f ∈ {1, . . . , k}, (14)

where π : {1, . . . , p} → {1, . . . ,	} is a grouping of model parameters. That means, for
example, the regularization value for vl, f would be λv

f,π (l).

Probabilistic Interpretation. Both loss and regularization can also be motivated from a
probabilistic point of view (e.g., Salakhutdinov and Mnih [2008b]). The least-squares
loss corresponds to the assumption that the target y is Gaussian distributed with the
prediction as mean

y|x,� ∼ N (ŷ(x,�), 1/α). (15)

For binary classification, a Bernoulli distribution is assumed.

y|x,� ∼ Bernoulli(b (ŷ(x,�))), (16)

where b : R→ [0, 1] is a link function, typically the logistic function σ or the cumula-
tive distribution function (CDF) of a standard normal distribution (�).

L2 regularization corresponds to Gaussian priors on the model parameters.

θ |μθ , λθ ∼ N (μθ, 1/λθ) (17)

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

57:6 S. Rendle

Fig. 2. Graphical representation of the variables involved in a standard factorization machine. (a) The
variables are target y, input features x, model parameters w0, w j, v j, f , and hyperparameters/ priors μ,λ, α.
(b) The priors are extended by hyperpriors �0 = {α0, αλ, β0, βλ, γ0, μ0} which allows the MCMC algorithm
(Algorithm 3) to find the prior parameters automatically [Freudenthaler et al. 2011].

The prior mean μθ should be grouped and organized the same way as the regulariza-
tion values λθ (see Eq. (14)).

The graphical model for the probabilistic view can be seen in Figure 2(a). The max-
imum a posteriori (MAP) estimator for this model (with α = 1, μθ = 0) is the same as
the optimization criterion of Eq. (13).

Gradients. For direct optimization of the loss functions, the derivatives are for least-
squares regression,

∂

∂θ
lLS(ŷ(x|�), y) =

∂

∂θ

(
ŷ(x|�)− y

)2 = 2
(
ŷ(x|�)− y

) ∂

∂θ
ŷ(x|�), (18)

or for classification,

∂

∂θ
lC(ŷ(x|�), y) =

∂

∂θ
− ln σ

(
ŷ(x|�) y

)
=
(
σ
(
ŷ(x|�) y

)− 1
)

y
∂

∂θ
ŷ(x|�). (19)

Finally, due to multilinearity of the FM model, the partial derivative of the model
equation with respect to θ corresponds to hθ (Eq. (7)).

∂

∂θ
ŷ(x|�) = hθ (x). (20)

3.2. Stochastic Gradient Descent (SGD)

Stochastic gradient descent (SGD) algorithms are very popular for optimizing factor-
ization models as they are simple, work well with different loss functions, and have low
computational and storage complexity. Algorithm 1 shows how FMs can be optimized

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

Factorization Machines with libFM 57:7

ALGORITHM 1: Stochastic Gradient Descent (SGD)
Input: Training data S, regularization parameters λ, learning rate η, initialization σ

Output: Model parameters � = (w0, w, V)
w0 ← 0; w← (0, . . . , 0); V ∼ N (0, σ);
repeat

for (x, y) ∈ S do
w0 ← w0 − η

(
∂

∂w0
l(ŷ(x|�), y) + 2 λ0 w0

)
;

for i ∈ {1, . . . , p} ∧ xi �= 0 do
wi← wi− η

(
∂

∂wi
l(ŷ(x|�), y) + 2 λw

π (i) wi

)
;

for f ∈ {1, . . . , k} do
vi, f ← vi, f − η

(
∂

∂vi, f
l(ŷ(x|�), y) + 2 λv

f,π (i) vi, f

)
;

end
end

end
until stopping criterion is met;

with SGD [Rendle 2010]. The algorithm iterates over cases (x, y) ∈ S and performs
updates on the model parameters.

θ ← θ − η

(
∂

∂θ
l(ŷ(x), y) + 2 λθ θ

)
, (21)

where η ∈ R
+ is the learning rate or step size for gradient descent.

Complexity. The SGD algorithm for FMs has a linear computational and constant
storage complexity. For one iteration over all training cases, the runtime complexity
of SGD is O(k Nz(X)) because, for each single case (x, y) ∈ S, the complexity for the
gradient steps is O(k

∑p
i=1 δ(xi �= 0)) = O(k Nz(x)).

Hyperparameters. For performing SGD, there are several critical hyperparameters.

— Learning rate η: The convergence of SGD depends largely on η: if η is chosen too
high, the algorithm does not converge, and if it is chosen too small, convergence is
slow. Typically, η is the first hyperparameter that should be determined.

— Regularization λ: As noted in Section 3.1, the generalization capabilities of FMs
and thus the prediction quality, depends largely on the choice of the regularization
λ. The regularization values are typically searched on a separate holdout set, for
example, using grid search. As there are several regularization parameters (see
Eq. (14)), the grid has exponential size and thus this search is very time-consuming.
To make the search more feasible, the number of regularization parameters is usu-
ally reduced, for example, groups are dropped and all factor layers use the same
regularization value.

— Initialization σ : The parameters for the factorized interactions (V) have to be initial-
ized with nonconstant values. In LIBFM, the values are sampled from a zero-mean
normal distribution with standard deviation σ . Typically small values are used
for σ .

SGD with Adaptive Regularization. In Rendle [2012], it has been shown how the regular-
ization values can be adapted automatically in SGD, while the model parameters are
learned. LIBFM includes the adaptive regularization algorithm proposed there and
extends it with groups.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

57:8 S. Rendle

3.3. Alternating Least-Squares/Coordinate Descent

The optimization approach of SGD is based on iterating over cases (rows) of the train-
ing data and performing small steps in the direction of a smaller loss. Coordinate
descent or alternating least-squares (ALS) takes another approach by minimizing the
loss per model parameter. For least-squares regression with L2-regularization, the op-
timal value θ∗ for one model parameter θ given all remaining parameters � \ {θ} can
be calculated directly [Rendle et al. 2011] as

θ∗ = argmin
θ

⎛
⎝ ∑

(x,y)∈S

(
ŷ(x|�)− y

)2 +
∑
θ∈�

λθθ
2

⎞
⎠

= argmin
θ

⎛
⎝ ∑

(x,y)∈S

(
gθ (x|� \ {θ}) + θ hθ (x|� \ {θ})− y

)2 +
∑
θ∈�

λθθ
2

⎞
⎠ (22)

=
∑n

i=1(y− gθ (xi|� \ {θ})) hθ(xi|� \ {θ})∑n
i=1 hθ (xi)2 + λθ

=
θ
∑n

i=1 h2
θ (xi) +

∑n
i=1 hθ (xi) ei∑n

i=1 hθ (xi)2 + λθ

,

where ei is the ‘error’ term/ residual of the ith case.

ei := yi − ŷ(xi|�). (23)

This allows us to derive a least-squares learning algorithm (see Algorithm 2) that it-
eratively solves a least-squares problem per model parameter and updates each model
parameter with the optimal (local) solution,

θ ← θ∗. (24)

This is performed iteratively over all parameters until convergence.

Complexity. The main effort of ALS learning (Eq. (22)) is computing the following two
quantities.

n∑
i=1

hθ (xi)2,

n∑
i=1

hθ (xi)ei =
n∑

i=1

hθ (xi)
(
yi− ŷ(xi|�)

)
. (25)

With a trivial implementation, updating one model parameter would require comput-
ing the model equation ŷ(xi), and the gradient hθ (xi) for each training case xi where
the corresponding column j is nonzero (xi, j �= 0). For example, for updating the model
parameter v j, f , this would render the complexity O(

∑n
i=1 δ(xi, j �= 0) k Nz(xi)). In total,

this would have to be computed for each of the 1 + p (k + 1) model parameters.
In Rendle et al. [2011], it has been shown how one full iteration over all model

parameters � can be done efficiently in O(Nz(X) k) by precomputing the caches e ∈ R
n

(see Eq. (23)) and Q ∈ R
n×k such that

qi, f :=
p∑

l=1

vl, f xi,l, (26)

which allows us to compute h quickly in O(1).

hvl, f (xi) = xi,l
(
qi, f − vl, f xi,l

)
. (27)

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

Factorization Machines with libFM 57:9

ALGORITHM 2: Alternating least squares (ALS)
Input: Training data S, regularization parameters λ, initialization σ

Output: Model parameters � = (w0, w, V)
w0 ← 0; w← (0, . . . , 0); V ∼ N (0, σ);
repeat

ŷ← predict all cases S;
e← y− ŷ;
w0 ← w∗0;
for l ∈ {1, . . . , p} do

wl← w∗l ;
update e;

end
for f ∈ {1, . . . , k} do

init q·, f ;
for l ∈ {1, . . . , p} do

vl, f ← v∗l, f ;
update e, q;

end
end

until stopping criterion is met;

Now calculating θ∗ for the lth parameter is in O(
∑n

i=1 δ(xi,l �= 0)). Also, updating each
cache value q and e can be done in constant extra time (see Rendle et al. [2011]).

However, the speed-up comes at the price of higher memory consumption for the
caches. The approach presented in Rendle et al. [2011] has an additional memory
complexity of O(nk) because of the Q-cache. LIBFM provides a more efficient imple-
mentation with only O(n) memory complexity for the Q-cache (see Algorithm 2). The
idea is that the model parameters are updated per layer f (i.e., first all parameters
v1,1, v2,1, v3,1, . . ., then v1,2, v2,2, v3,2, . . ., etc.), and in each layer, only the cache values
Q of the same layer have to be present. This means that LIBFM stores (and updates)
only the Q-cache for one layer (and thus the storage is O(n)), and when changing the
layer, the Q-values of the new layer are computed/initialized. The initialization of the
Q-values per layer has no negative effect on the overall computational complexity.

Hyperparameters. A clear advantage of ALS over SGD is that ALS has no learn-
ing rate as hyperparameter. However, two important hyperparameters remain:
regularization and initialization. Finding good regularization values is especially
computational-expensive.

Classification. The ALS algorithm described so far is restricted to least-squares re-
gression and cannot solve classification tasks. LIBFM contains classification capabil-
ities for ALS/coordinate descent, which is based on using a probit-link function. This
approach is motivated from the probabilistic interpretation (Section 3.1) and will be
described at the end of the MCMC section.

3.4. Markov Chain Monte Carlo (MCMC) Inference

The Bayesian model used so far can be seen in Figure 2. Both ALS and SGD learn the
best parameters � which are used for a point estimate of ŷ. MCMC is a Bayesian
inference technique that generates the distribution of ŷ by sampling. For MCMC

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

57:10 S. Rendle

inference in FMs using Gibbs sampling, the conditional posterior distributions for each
model parameter are [Freudenthaler et al. 2011]

θ |X , y,� \ {θ},�H ∼ N (μ̃θ , σ̃
2
θ), (28)

where

σ̃ 2
θ :=

(
α

n∑
i=1

hθ (xi)2 + λθ

)−1

, (29)

μ̃θ := σ̃ 2
θ

(
α θ

n∑
i=1

h2
θ (xi) + α

n∑
i=1

hθ (xi) ei + μθ λθ

)
, (30)

and �H are the hyperparameters

�H := {(μ0, λ0), (μw
π , λw

π), (μv
f,π , λv

f,π) : ∀π ∈ {1, . . . ,	},∀ f ∈ {1, . . . , k}}. (31)

When comparing the conditional posterior of model parameters for MCMC (Eq. (30))
and the ALS solution (Eq. (22)), it can be seen that both are very similar, that is,
θ∗ = μ̃θ with α = 1 and μ· = 0. The difference is that MCMC samples from the posterior
distribution, while ALS uses the expected value.

A major advantage of MCMC over ALS and SGD is that it allows us to integrate the
regularization parameters �H into the model, which avoids a time-consuming search
for these hyperparameters. For integration of �H, the Bayesian FM model is extended
(Figure 2) by placing distributions on the priors (hyperprior distributions). For each
pair (μθ, λθ) ∈ �H of prior parameters, a Gamma distribution is assumed for λθ and a
normal distribution for μθ . That is,

μw
π ∼ N (μ0, γ0λ

w
π), λw

π ∼ �(αλ, βλ), μv
f,π ∼ N (μ0, γ0λ

v
f,π), λv

f,π ∼ �(αλ, βλ), (32)

where μ0, γ0, as well as αλ and βλ, describe the hyperprior distributions. Finally, a
Gamma distribution is also placed on α.

α ∼ �(α0, β0). (33)

In total, the hyperpriors lead to the following new parameters �0.

�0 := {α0, β0, αλ, βλ, μ0, γ0} . (34)

MCMC allows us to integrate �H into the inference process, that is, values for �H
are found automatically by sampling from their corresponding conditional posterior
distributions [Freudenthaler et al. 2011].

α|y, X ,�0,� ∼ �

(
α0 + n

2
,

1
2

[
n∑

i=1

(yi− ŷ(xi|�))2 + β0

])
, (35)

λ·π |�0,�H \ {λ·π },� ∼ �

⎛
⎝αλ + pπ + 1

2
,

1
2

⎡
⎣ p∑

j=1

δ(π(j) = π)(θ j− μθ)2 + γ0(μ·π − μ0)2 + βλ

⎤
⎦
⎞
⎠,

(36)

μ·π |�0,�H \ {λ·π },� ∼ N
⎛
⎝(pπ + γ0)−1

⎡
⎣ p∑

j=1

δ(π(j) = π)θ j + γ0μ0

⎤
⎦ ,

1
(pπ + γ0)λ·π

⎞
⎠, (37)

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

Factorization Machines with libFM 57:11

with

pπ :=
p∑

j=1

δ(π(j) = π). (38)

Complexity. The Gibbs sampler for MCMC inference is sketched in Algorithm 3 and
has the same complexity as the ALS algorithm. This follows directly from the ob-
servation that for both algorithms, the same summations have to be computed for
the conditional posterior distribution in MCMC and the expected value in ALS. The
overhead of MCMC is the inference over the �H, that is, computing the posteriors
(Eqs. (35), (36), and (37)), but even with a straightforward implementation, this is in
O(k Nz(X)).

Hyperparameters. A major advantage of MCMC is that the regularization values �H
are automatically determined. This comes at the price of introducing parameters for
hyperpriors �0. However, (1) the number of hyperpriors |�H| is smaller than the num-
ber of regularization parameters |�0|, and (2) more importantly, MCMC is typically
insensitive to choices of �0. That is, a trivial choice for the values of �0 works well.
In LIBFM, the following trivial values for �0 are used: α0 = β0 = αλ = βλ = γ0 = 1 and
μ0 = 0.

The only hyperparameter that remains for MCMC is the initialization σ . In gen-
eral here, one can even use a value of 0 (which is not possible for ALS and SGD),
because MCMC’s posterior uncertainty will identify the factorization; however, choos-
ing a proper value can speed up the sampler. One can usually see in the first few
samples if an initialization σ is a good choice.

Classification. The MCMC Algorithm 3 solves regression tasks. It can be extended for
binary classification by mapping the normal distributed ŷ to a probability b (ŷ) ∈ [0, 1]
that defines the Bernoulli distribution for classification [Gelman et al. 2003]. That
means, the MCMC algorithm will predict the probability that a case is of the positive
class. LIBFM uses the CDF of a normal distribution as mapping, that is, b (z) = �(z),
because the posteriors are then easy to sample from.

The only two changes that have to be made to Algorithm 3 for classification is
(1) that for prediction, ŷ is transformed by �, and (2) that instead of regressing to
y, the regression target y′ is sampled in each iteration from its posterior that has a
truncated normal distribution.

y′i|xi, yi,� ∼
{N (ŷ(xi,�), 1) δ(y′i < 0), if yi has the negative class
N (ŷ(xi,�), 1) δ(y′i ≥ 0), if yi has the positive class

. (39)

Sampling from this distribution is efficient [Robert 1995].
As noted before ALS, for regression, can be seen as a simplification of MCMC where

the model parameters are not sampled but their expectation value is taken in each
update. A classification option for ALS is available in LIBFM that follows the same
idea, and instead of sampling from the truncated normal (as it is done in MCMC), for
classification with ALS, the expected value of the truncated normal is computed.

3.5. Summary

An overview of the properties of the learning algorithms in LIBFM can be found in
Table I.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

57:12 S. Rendle

ALGORITHM 3: Markov Chain Monte Carlo Inference (MCMC)
Input: Training data S, Test data Stest, initialization σ

Output: Prediction ŷtest for the test cases
w0 ← 0; w← (0, . . . , 0); V ∼ N (0, σ);
#samples← 0;
repeat

ŷ← predict all cases S;
e← y− ŷ;
Update the hyperparameters:
sample α from eq. (35);
for (μ·π , λ·π) ∈ �H do

sample λ·π from eq. (36);
sample μ·π from eq. (37);

end
Update the model parameters:
sample w0 from N (μ̃w0 , σ̃ 2

w0
);

for l ∈ {1, . . . , p} do
sample wl from N (μ̃wl, σ̃

2
wl

);
update e;

end
for f ∈ {1, . . . , k} do

init q·, f ;
for l ∈ {1, . . . , p} do

sample vl, f from N (μ̃vl, f , σ̃
2
vl, f

);
update e, q;

end
end
#samples← #samples + 1;
ŷ∗test ← predict all cases Stest;
ŷtest ← ŷtest + ŷ∗test;

until stopping criterion is met;
ŷtest ← 1

#samples
ŷtest;

Table I. Properties of the Learning Algorithms in LIBFM

Algorithm SGD ALS MCMC

Runtime Complexity O(k Nz(X)) O(k Nz(X)) O(k Nz(X))
Storage Complexity O(1) O(n) O(n)
Regression yes yes yes
Classification yes yes yes
Hyperparameters initialization,

regularization values λs,
learning rate η

initialization,
regularization values λs

initialization,
hyperpriors (insensitive)

4. RELATED WORK AND APPLICATION OF FACTORIZATION MACHINES

First, examples for input data are shown, including how they relate to other special-
ized factorization models. Note that FMs are not restricted to the choices presented
here. Second, other generic factorization models are compared to FMs. Third, FMs are
compared to polynomial regression.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

Factorization Machines with libFM 57:13

4.1. Expressing Factorization Models with Factorization Machines

In this section, the generality of FMs will be discussed by comparing them to other
specialized state-of-the-art factorization models. This also shows how to apply FMs
by defining the input data (i.e., features). It is crucial to note that, in practice, only
the feature vector x has to be defined; the rest is done implicitly by the FM—neither
an explicit reformulation of the model equation nor developing of new prediction nor a
learning algorithms is necessary. The analysis of the FM model equation that is done
in this section is just to show the theoretical relations to other models.

4.1.1. Matrix Factorization. Assume data about two categorical variables U (e.g., a user)
and I (e.g., an item) should be used in a FM. The straightforward way to describe a
case (u, i) ∈ U × I is to use a feature vector x ∈ R

|U|+|I| with binary indicator variables,
that is,

(u, i)→ x = (0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
|U|

, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
|I|

), (40)

where the uth entry in the first part of x is 1, the ith entry on the second part of x is 1,
and the rest is 0 (e.g., see the first two groups of Figure 1). Using this data in an FM,
the FM will be exactly the same as a (biased) matrix factorization model (FM) [Paterek
2007; Srebro et al. 2005].

ŷ(x) = ŷ(u, i) = w0 + wu + wi +
k∑

f=1

vu, f vi, f . (41)

4.1.2. Pairwise Interaction Tensor Factorization. If three categorical variables should be
described, for example, U, I, and T (e.g., tags), a straightforward representation with
a feature vector would be x ∈ R

|U|+|I|+|T|.

(u, i, t)→ x = (0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
|U|

, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
|I|

, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
|T|

). (42)

An FM using this data representation would be similar to the pairwise interaction
tensor factorization model (PITF) [Rendle and Schmidt-Thieme 2010].

ŷ(x) = ŷ(u, i, t) = w0 + wu + wi + wt +
k∑

f=1

vu, f vi, f +
k∑

f=1

vu, f vt, f +
k∑

f=1

vi, f vt, f . (43)

The difference between this FM and the original PITF is that this FM contains lower-
order interactions and shares the factors V between interactions. Besides this, both
approaches are identical.

4.1.3. SVD++ and FPMC. Assume that there are two categorical variables (e.g., U and
I) and one set-categorical variable (e.g., P(L)). One simple representation of this data
would be x ∈ R

|U|+|I|+|L|.

(u, i, {l1, . . . , lm})→ x = (0, . . . , 1, 0, . . .︸ ︷︷ ︸
|U|

, 0, . . . , 1, 0, . . .︸ ︷︷ ︸
|I|

, 0, . . . , 1/m, 0, . . . , 1/m, 0, . . .︸ ︷︷ ︸
|L|

),

(44)

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

57:14 S. Rendle

where each of the m elements of the set {l1, . . . , lm} is described by a nonzero value,
for example, by 1/m in the corresponding column (e.g., see the first three groups of
Figure 1). With this data, the FM will be equivalent to

ŷ(x) = ŷ(u, i, {l1, . . . , lm}) =

SVD++︷ ︸︸ ︷
w0 + wu + wi + 〈vu, vi〉 + 1

m

m∑
j=1

〈vi, vlj〉
︸ ︷︷ ︸

FPMC

+
1
m

m∑
j=1

wlj +
1
m

m∑
j=1

〈vu, vlj〉 +
1

m2

m∑
j=1

m∑
j ′> j

〈vlj, vlj ′ 〉. (45)

If implicit feedback is used as input for {l1, . . . , lm}, the FM just sketched is almost
the same as the SVD++ model [Koren 2008; Salakhutdinov and Mnih 2008b; Takács
et al. 2009]. The first part (annotated with SVD++) is exactly the same as the original
SVD++ [Koren 2008]; the second part (second line in Eq. (45)) contains some additional
interactions. If sequential information is used as input for {l1, . . . , lm}, the FM is very
similar to the Factorized Personalized Markov Chain (FPMC) [Rendle et al. 2010]—
especially if the FM is optimized for ranking (like FPMC) almost all terms that are in
the FM model but not in the FPMC model will vanish (see [Rendle 2010] for details). If
social information is used as input (e.g., friends), the FM is similar to the Social Trust
Ensemble (STE) [Ma et al. 2011].

4.1.4. BPTF and TimeSVD++. If time should be included, the most simple approach is
to treat time as a categorical variable (e.g., each day is a level) and apply the same
encoding as in Eq. (42). The FM with this data is similar to the time-aware BPTF
model [Xiong et al. 2010]. The differences are that BPTF uses a ternary PARAFAC
model over the three categorical variables (user, item, time), whereas FM uses fac-
torized pairwise interactions. Moreover, BPTF has an additional regularizer over the
time variables. In Freudenthaler et al. [2011], it has been shown that the FM works
indeed better than the more complex BPTF model.

Another approach is to use a separate time variable per user (i.e., making the user-
time interaction explicit). The input data would be x ∈ R

|U|+|I|+|U| |T| with binary indica-
tors for the user, item, and a user-specific day indicator. With this data, the FM model
would be equivalent to.

ŷ(x) = ŷ(u, i, t) = w0 + wu + wi + w(u,t) +
k∑

f=1

vu, f vi, f +
k∑

f=1

v(u,t), f vi, f +
k∑

f=1

v(u,t), f vu, f

= w0 + wu + w(u,t)︸ ︷︷ ︸
bu(t)

+wi +
k∑

f=1

(vu, f + v(u,t), f)︸ ︷︷ ︸
vu, f (t)

vi, f +
k∑

f=1

v(u,t), f vu, f . (46)

This model captures the ‘day-specific variability’ of biases bu(t) and of factors vu, f (t),
exactly as in the TimeSVD model of Koren [2009b]. Extending the feature vectors of
the FM with implicit feedback indicators (see Section 4.1.3) and a linear indicator for
the time will result in the TimeSVD++ model (the time group of Figure 1 is an example
for a linear time indicator).

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

Factorization Machines with libFM 57:15

4.1.5. Nearest Neighbor Models. When other numerical measurements are available,
for example, other ratings r1, r2, . . . , the same user has given to items l1, l2, . . . ∈ I etc.,
this can be encoded in a feature vector x ∈ R

|I|+|I|.

(i, {(r1, l1), . . . , (rm, lm)})→ x = (0, . . . , 1, . . . , 0︸ ︷︷ ︸
|I|

, 0, . . . , r1/m, 0, . . . , rm/m, . . . , 0︸ ︷︷ ︸
|I|

). (47)

The FM model with this data would be equivalent to

ŷ(x) = ŷ(i, {(r1, l1), . . . , (rm, lm)}) = w0 + wi +
1
m

m∑
j=1

rj wlj +

Factorized KNN︷ ︸︸ ︷
1
m

m∑
j=1

rj〈vi, vlj〉

+
1

m2

m∑
j=1

m∑
j ′> j

r j rj ′ 〈vlj, vlj ′ 〉 (48)

This model is similar to the factorized nearest neighbor model [Koren 2010].
Another possible approach to encode the data would be to use separate rating indi-

cators per item and one for the user, that is, x ∈ R
|I|+|U|+|I||I|. That means the rating

indicators in Eq. (47) would be in a separate block for each item. An FM of order d = 1
with this data would be equivalent to

ŷ(x) = ŷ(i, u, {(r1, l1), . . . , (rm, lm)}) = w0 + wi + wu +
1
m

m∑
j=1

rj wi,lj. (49)

This approach is identical to the nonfactorized nearest neighbor model of Koren [2008].
It can be combined with the implicit feedback idea which results in the KNN++ model
[Koren 2008].

4.1.6. Attribute-Aware Models. There are several attempts to integrate attribute infor-
mation about users and items into recommender systems. It is very simple to use such
information in an FM. A straightforward approach is to add the attributes of an item
(or user), such as genre, actor, etc., to the input vector x.

Assume the input vector consists of such item attributes and an indicator variable
for the user.

(u, ai
1, . . . , ai

m)→ x = (0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
|U|

, ai
1, . . . , ai

m︸ ︷︷ ︸
attributes of item i

). (50)

With this data, the FM would be equivalent to

ŷ(x) = ŷ(u, ai
1, . . . , ai

m) = w0 + wu +
m∑
j=1

ai
j w j +

m∑
j=1

ai
j〈vu, v j〉

︸ ︷︷ ︸
‘attribute mapping’

+
m∑
j=1

m∑
j ′> j

ai
j a

i
j ′ 〈v j, v j ′ 〉. (51)

This is almost identical to the attribute-aware approach in Gantner et al. [2010] that
uses a linear regression to map item attributes to factors (see the highlighted part
‘attribute mapping’ of Eq. (51))—the only difference is that the FM contains biases
as well as additional interactions between item attributes (e.g., between genre and
actors).

If the input vector of standard matrix factorization (Eq. (40)) is extended by at-
tribute information of the user (e.g., demographics) and attributes of the item, the FM

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

57:16 S. Rendle

would correspond to the attribute-aware model proposed in Agarwal and Chen [2009].
Again, the difference is that the FM contains additional interactions within user and
item attributes (e.g., interaction between a user’s age and gender).

4.2. Other Generic Factorization Models

There are other attempts for a more generic factorization model. In Agarwal and Chen
[2009], a matrix factorization model is extended with regression priors. That is, the
mean of the normal distributed priors of factors is a linear regression model. FMs
can mimic this approach because for any hierarchical model using normal distributed
priors, the mean value of the prior (and thus also a linear regression model for the
prior mean) can be added as covariates to the feature vectors. On the other hand, MF
with regression priors is much more restricted than FMs, because MF itself is limited
to interactions of two categorical variables, and thus, the MF model with regression
priors is not appropriate for tasks with interactions over more than two variables,
for example, tag recommendation or context aware recommendation. FMs include
(pairwise) interactions between any number of variables (also not limited to categorical
ones).

SVDfeature [Chen et al. 2011] is another generic factorization model. Similar to
Agarwal and Chen [2009], in SVDfeature, a matrix factorization model is extended
with linear regression terms for the factors and for the bias term. However, compared
to FMs, it shares the same shortcomings of Agarwal and Chen [2009]: only interactions
between two categorical variables can be factorized. That means it is not able to mimic
state-of-the-art context-aware recommenders, tag recommenders, etc. Moreover, for
SVDfeature, only SGD learning has been proposed, whereas LIBFM features MCMC
inference, which is much more simple to apply, as there is no learning rate, and the
regularization values are automatically determined. An advantage of SVDfeature over
LIBFM is that due to the more restrictive model equation, it has an improved learning
algorithm (following Koren [2008]) for speeding up learning in factor regression terms.

4.3. Relation to Polynomial Regression

In Rendle [2010] it has been shown that FMs can be seen as polynomial regression (or
SVM with inhomogeneous polynomial kernel) using factorized parameter matrices.
Polynomial regression of order d = 2 can be defined as

ŷPR(x) := w0 +
p∑

j=1

w j x j +
p∑

j=1

p∑
j ′= j

w j, j ′ x j x j ′ , (52)

with model parameters

w0 ∈ R, w ∈ R
p, W ∈ R

p×p. (53)

Comparing this to the FM model (Eq. (1)) one can see that FMs use a factorization
for pairwise interactions, whereas polynomial regression uses an independent param-
eter w j, j ′ per pairwise interaction. This difference is crucial for the success of FMs in
sparse settings, for example, recommender systems or other prediction problems in-
volving categorical variables of large domain. FMs can estimate pairwise interactions
w j, j ′ for pairs (j, j ′) even if none or only little observation about the pair is present,
because a low-rank assumption is made (w j, j ′ ≈ 〈v j, v j ′ 〉), that is, it is assumed that
the interaction of pair (j, j ′) and (j, j∗) have something in common. In polynomial re-
gression, both pairs are completely independent (a priori).

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

Factorization Machines with libFM 57:17

5. LIBFM SOFTWARE

LIBFM1 is an implementation of factorization machines. It includes the SGD, ALS,
and MCMC algorithms described in Section 3 3 for regression and classification tasks.
FMs of order d = 2 are implemented.

5.1. Data Format

The input data format of LIBFM is the same as for SVMlight [Joachims 1999] and LIB-
SVM [Chang and Lin 2011]. For very large-scale data that does not fit into main mem-
ory, LIBFM has a binary data format where only parts have to be kept in main memory.
A converter from the standard text format to the binary data format is available.

5.2. Example

All major options are available over an easy-to-use command line interface. An exam-
ple call for learning a dataset with MCMC inference would be

./libFM -method mcmc -task r -dim ’1;1;8’ -init_stdev 0.1 -iter 100
-test ml1m-test.libfm -train ml1m-train.libfm -out ml1m-test.pred,

where dim specifies the factorization dimensions: 0/1 if w0 should be included, 0/1 if w
should be included, and k ∈ N (here k = 8) for the dimensionality of V. init stdev is
the standard deviation for initialization, that is, σ of Algorithm 3. iter is the number
of samples that are drawn.

5.3. Parameter Setup

In the following, a few practical hints for applying LIBFM to a prediction problem are
given.

(1) For inexperienced users, it is advisable to use MCMC inference, as it is the most
simple one to work with.

(2) When a predictive model for a new dataset is built, one should start with a low
factorization dimensionality (e.g., k = 8) and first determine the standard deviation
for initialization (-init stdev), because proper values will speed-up the MCMC
sampler.

(3) Several values for init stdev should be tested (e.g., 0.1, 0.2, 0.5, 1.0). The success
can be quickly seen on the first few iterations by monitoring the training error or,
even better by using a holdout set for validation.

(4) After an appropriate init stdev has been determined, MCMC can be run with a
large number of iterations and larger factorization dimensionality k. The accuracy
and convergence can be monitored on the output of libFM.

For MCMC, no other hyperparameters have to be specified. Other methods (ALS and
SGD) require more hyperparameters to tune (see Section 3 3).

5.4. Ranking

LIBFM also contains methods for optimizing an FM model with respect to ranking
[Liu and Yang 2008] based on pairwise classification [Rendle et al. 2009]. Ranking is
not available over the command line but can be embedded into existing software. An
example for embedding LIBFM is provided in the software tool Tag Recommender (also
available with source code).

1Available with source code from http://www.libfm.org/.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

57:18 S. Rendle

Fig. 3. Prediction error of LIBFM with SGD and MCMC learning using MF (see Eq. 40) and KNN (see
Eq. 49) input data. (a) Compare to the MF approaches PMF (SGD) [Salakhutdinov and Mnih 2008b], BPMF
(MCMC) [Salakhutdinov and Mnih 2008a], and MF (SGD) [Koren 2008]. (b) Compare to the corresponding
KNN approach of Koren [2008].

6. EVALUATION

In Section 4.1, it was shown that FMs are able to mimic many factorization models.
Now this will be substantiated by comparing the LIBFM implementation empirically
to several well studied factorization models. The success will be measured by root
mean-square error (RMSE) for regression tasks and F1-measure for ranking tasks (see
Gunawardana and Shani [2009] for a summary of evaluation metrics for recommender
systems).

6.1. Rating Prediction

In recommender systems, the most well studied data set is the Netflix challenge2 which
includes about 100,000,000 ratings of about 480,000 users for 17,770 items. All our
reported results are obtained on the Netflix quiz set (i.e., the same test set as on the
public leaderboard from the Netflix challenge).

6.1.1. Matrix Factorization (MF). The most successful approaches on Netflix are based
on matrix factorization (e.g., [Jahrer et al. 2010; Koren 2009a; Takács et al. 2009]). For
MF, many different variations and learning approaches have been proposed, for exam-
ple, ALS [Pilászy et al. 2010], MCMC [Salakhutdinov and Mnih 2008a], Variational
Bayes [Lim and Teh 2007; Stern et al. 2009], but mostly SGD variants (e.g., [Koren
2008; Salakhutdinov and Mnih 2008b]). Thus, even for the simple MF model, the pre-
diction quality reported differ largely. We want to investigate how good the learning
methods of LIBFM are by setting up an FM with MF indicators (see Eq. (40)), which
is equivalent to biased MF. With this setting, all compared approaches share the same
model but differ in learning algorithm and implementation.

Figure 3(a) shows a comparison of LIBFM (using SGD and MCMC3) to the SGD
approaches of PMF [Salakhutdinov and Mnih 2008b] and the MF (SGD) approach of
[Koren 2008], as well as the BPMF approach using MCMC inference [Salakhutdinov

2http://www.netflixprize.com/
3FM (SGD) results are from Rendle [2012], FM (MCMC) results from Freudenthaler et al. [2011].

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

Factorization Machines with libFM 57:19

Fig. 4. LIBFM for context-aware recommendation compared to Multiverse Recommendation [Karatzoglou
et al. 2010]. Compares LIBFM for the task of tag recommendation to the best four approaches on Task 2 of
the ECML/PKDD Discovery Challenge 2009.

and Mnih 2008a]. For LIBFM with SGD, we use the regularization values (λθ = 0.04)
that have been reported in Koren [2008] for the related SVD++ model. It can be seen
that the MCMC approaches have the lowest error, and the MCMC sampler of LIBFM
outperforms the sampler of the BPMF model slightly.

6.1.2. Nearest Neighbor Models. Traditionally, nearest neighbor models have attracted
a lot of research in the recommender system community (e.g., [Linden et al. 2003;
Sarwar et al. 2001; Zheng and Xie 2011]). On the Netflix challenge, the best perform-
ing neighborhood approaches are based on treating the similarities between items as
model parameters which are learned, that is, KNN (Eq. (49)) [Koren 2008] and factor-
ized KNN (Eq. (48)) [Koren 2010]. Again, we want to see how well LIBFM can mimic
these models just by feature engineering. We set up the input data for LIBFM such
that the FM model corresponds to the KNN and KNN++ (i.e., with additional implicit
indicators) as described in Koren [2008]. We use the same pruning protocol to restrict
to 256 neighbors, and for SGD, we use the same regularization (λθ = 0.002) as re-
ported in Koren [2008]. Figure 3(b) shows that LIBFM with MCMC and SGD achieves
comparable quality to the approach of Koren [2008].

6.2. Context-Aware Recommendation

Secondly, LIBFM has been studied on the problem of context-aware recommendation
[Rendle et al. 2011]. In context-aware recommendation, besides the user and item,
there is other information about the rating event available, for example, the location
of the user at the time of his rating, the mood, etc. As FMs can work with any number
of features, they can be applied easily to this task. Figure 4(a)4 shows a comparison
of LIBFM using ALS and MCMC to the state-of-the art approach Multiverse Recom-
mendation [Karatzoglou et al. 2010], which outperforms other context-aware methods,
such as item splitting [Baltrunas and Ricci 2009] and the multidimensional approach
of Adomavicius et al. [2005].

4Please see Karatzoglou et al. [2010] and Rendle et al. [2011] for details about the experimental setup.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

57:20 S. Rendle

6.3. Tag Recommendation

The last experiment shows the applicability of LIBFM to ranking. We compare LIBFM
for the task of tag recommendation (e.g., Lipczak and Milios [2011]) using input data,
as in Eq. (42). With this data, LIBFM mimics the PITF model [Rendle and Schmidt-
Thieme 2010] which was the best performing approach5 on Task 2 of the ECML/ PKDD
Discovery Challenge 2009. Figure 4(b) shows a comparison of the prediction quality
of LIBFM to PITF and the second to fourth best models of the Discovery Challenge:
relational classification [Marinho et al. 2009] and the models of the third [Lipczak
et al. 2009] and fourth place [Zhang et al. 2009].

7. CONCLUSION AND FUTURE WORK

Factorization machines (FM) combine the flexibility of feature engineering with fac-
torization models. This article summarizes the recent research on FMs and presents
three efficient inference methods based on SGD, ALS, and MCMC. Also extensions
are presented, among them classification for MCMC and ALS, as well as grouping of
variables.

The properties of FMs have been discussed both theoretically in terms of complexity,
expressiveness, and relations to other factorization models, as well as with an empiri-
cal evaluation. It has been shown that FMs can mimic several specialized factorization
models—for certain, FMs are not restricted to these examples. Empirical results show
that the prediction quality of the described inference algorithms for FMs is compara-
ble to the best inference approaches for specialized models in the area of recommender
systems. In total, that means that the generality of FMs does not come to the prize of a
low prediction accuracy or a high computational complexity. All presented algorithms
are implemented in the publicly available software tool LIBFM.

There are several directions for future work on FMs. First, due to the generality
of FMs, they are supposed to be interesting for a wide variety of prediction problems,
especially problems involving categorical variables with large domains might benefit
from FMs. Studying FMs using LIBFM on such problems is highly interesting. Second,
the complexity of the inference methods for FMs could be reduced, because the algo-
rithms proposed so far make no use of repeating patterns in the input data which could
be exploited for an additional speed-up. Third, the software implementation LIBFM
could be extended by higher-order interactions (d≥ 3).

ACKNOWLEDGMENTS

I would like to thank Christoph Freudenthaler for many fruitful discussions and his valuable comments.

REFERENCES
ADOMAVICIUS, G., SANKARANARAYANAN, R., SEN, S., AND TUZHILIN, A. 2005. Incorporating contextual

information in recommender systems using a multidimensional approach. ACM Trans. Info. Syst. 23, 1,
103–145.

AGARWAL, D. AND CHEN, B.-C. 2009. Regression-based latent factor models. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’09). ACM,
New York, NY, 19–28.

BALTRUNAS, L. AND RICCI, F. 2009. Context-based splitting of item ratings in collaborative filtering. In
Proceedings of the third ACM Conference on Recommender Systems (RecSys’09). ACM, New York, NY,
245–248.

5The winning model was an ensemble of several PITF models and a postprocessing step. For a fair compar-
ison, here the F1-score for a single PITF model without postprocessing is reported. Both ensembling and
postprocessing could be done the same way for the LIBFM predictions, as well.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

Factorization Machines with libFM 57:21

CHANG, C.-C. AND LIN, C.-J. 2011. Libsvm: A library for support vector machines. ACM Trans. Intell. Syst.
Technol. 2, 27:1–27:27.

CHEN, T., ZHENG, Z., LU, Q., ZHANG, W., AND YU, Y. 2011. Feature-based matrix factorization. Tech. rep.
APEX-TR-2011-07-11, Apex Data & Knowledge Management Lab, Shanghai Jiao Tong University.

FREUDENTHALER, C., SCHMIDT-THIEME, L., AND RENDLE, S. 2011. Bayesian factorization machines. In
Proceedings of the NIPS Workshop on Sparse Representation and Low-rank Approximation.

GANTNER, Z., DRUMOND, L., FREUDENTHALER, C., RENDLE, S., AND LARS, S.-T. 2010. Learning
attribute-to-feature mappings for cold-start recommendations. In Proceedings of the IEEE International
Conference on Data Mining (ICDM’10). IEEE Computer Society, Los Alamintos, CA, 176–185.

GELMAN, A., CARLIN, J. B., STERN, H. S., AND RUBIN, D. B. 2003. Bayesian Data Analysis 2nd Ed. Chap-
man and Hall/CRC.

GUNAWARDANA, A. AND SHANI, G. 2009. A survey of accuracy evaluation metrics of recommendation tasks.
J. Mach. Learn. Res. 10, 2935–2962.

HALL, M., FRANK, E., HOLMES, G., PFAHRINGER, B., REUTEMANN, P., AND WITTEN, I. H. 2009. The
weka data mining software: An update. SIGKDD Explor. Newsl. 11, 10–18.

HARSHMAN, R. A. 1970. Foundations of the parafac procedure: Models and conditions for an ‘exploratory’
multimodal factor analysis. UCLA Working Papers in Phonetics, 1–84.

JAHRER, M., TÖSCHER, A., AND LEGENSTEIN, R. 2010. Combining predictions for accurate recommender
systems. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’10). ACM, New York, NY, 693–702.

JOACHIMS, T. 1999. Making Large-Scale Support Vector Machine Learning Practical. MIT Press, Cam-
bridge, MA, 169–184.

KARATZOGLOU, A., AMATRIAIN, X., BALTRUNAS, L., AND OLIVER, N. 2010. Multiverse recommendation:
n-dimensional tensor factorization for context-aware collaborative filtering. In Proceedings of the 4th
ACM Conference on Recommender Systems (RecSys’10). ACM, New York, NY, 79–86.

KOREN, Y. 2008. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In Pro-
ceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’08). ACM, New York, NY, 426–434.

KOREN, Y. 2009a. The bellkor solution to the Netflix grand prize.
KOREN, Y. 2009b. Collaborative filtering with temporal dynamics. In Proceedings of the 15th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD’09). ACM, New York, NY,
447–456.

KOREN, Y. 2010. Factor in the neighbors: Scalable and accurate collaborative filtering. ACM Trans. Knowl.
Discov. Data 4, 1:1–1:24.

LIM, Y. J. AND TEH, Y. W. 2007. Variational Bayesian approach to movie rating prediction. In Proceedings
of the KDD Cup and Workshop.

LINDEN, G., SMITH, B., AND YORK, J. 2003. Amazon.com recommendations: Item-to-item collaborative
filtering. Inter. Comput. IEEE 7, 1, 76–80.

LIPCZAK, M., HU, Y., KOLLET, Y., AND MILIOS, E. 2009. Tag sources for recommendation in collaborative
tagging systems. In Proceedings of the ECML-PKDD Discovery Challenge Workshop.

LIPCZAK, M. AND MILIOS, E. 2011. Efficient tag recommendation for real-life data. ACM Trans. Intell. Syst.
Technol. 3, 1, 2:1–2:21.

LIU, N. N. AND YANG, Q. 2008. Eigenrank: A ranking-oriented approach to collaborative filtering. In Pro-
ceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR’08). ACM, New York, NY, 83–90.

MA, H., KING, I., AND LYU, M. R. 2011. Learning to recommend with explicit and implicit social relations.
ACM Trans. Intell. Syst. Technol. Article 29.

MARINHO, L. B., PREISACH, C., AND SCHMIDT-THIEME, L. 2009. Relational classification for personalized
tag recommendation. In Proceedings of the ECML-PKDD Discovery Challenge Workshop.

PATEREK, A. 2007. Improving regularized singular value decomposition for collaborative filtering. In Pro-
ceedings of the KDD Cup Workshop 13th ACM International Conference on Knowledge Discovery and
Data Mining (SIGKDD’07). 39–42.

PILÁSZY, I., ZIBRICZKY, D., AND TIKK, D. 2010. Fast als-based matrix factorization for explicit and implicit
feedback datasets. In Proceedings of the 4th ACM Conference on Recommender Systems (RecSys’10).
ACM, New York, NY, 71–78.

RENDLE, S. 2010. Factorization machines. In Proceedings of the 10th IEEE International Conference on
Data Mining. IEEE Computer Society.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

57:22 S. Rendle

RENDLE, S. 2012. Learning recommender systems with adaptive regularization. In Proceedings of the 5th
ACM International Conference on Web Search and Data Mining (WSDM’12). ACM, New York, NY,
133–142.

RENDLE, S., FREUDENTHALER, C., GANTNER, Z., AND SCHMIDT-THIEME, L. 2009. BPR: Bayesian person-
alized ranking from implicit feedback. In Proceedings of the 25th Conference on Uncertainty in Artificial
Intelligence (UAI09).

RENDLE, S., FREUDENTHALER, C., AND SCHMIDT-THIEME, L. 2010. Factorizing personalized Markov
chains for next-basket recommendation. In Proceedings of the 19th International Conference on World
Wide Web (WWW’10). ACM, New York, NY, 811–820.

RENDLE, S., GANTNER, Z., FREUDENTHALER, C., AND SCHMIDT-THIEME, L. 2011. Fast context-aware
recommendations with factorization machines. In Proceedings of the 34th ACM SIGIR Conference on
Reasearch and Development in Information Retrieval.

RENDLE, S. AND SCHMIDT-THIEME, L. 2010. Pairwise interaction tensor factorization for personalized tag
recommendation. In Proceedings of the third ACM International Conference on Web Search and Data
Mining (WSDM’10). ACM, New York, NY, 81–90.

ROBERT, C. P. 1995. Simulation of truncated normal variables. Stat. Comput. 5, 121–125.
SALAKHUTDINOV, R. AND MNIH, A. 2008a. Bayesian probabilistic matrix factorization using Markov chain

Monte Carlo. In Proceedings of the 25th International Conference on Machine Learning.
SALAKHUTDINOV, R. AND MNIH, A. 2008b. Probabilistic matrix factorization. In Advances in Neural Infor-

mation Processing Systems 20.
SARWAR, B., KARYPIS, G., KONSTAN, J., AND RIEDL, J. 2001. Item-based collaborative filtering recommen-

dation algorithms. In Proceedings of the 10th International Conference on World Wide Web. ACM Press,
New York, NY, 285–295.

SREBRO, N. AND JAAKKOLA, T. 2003. Weighted low rank approximation. In Proceedings of the 20th Inter-
national Conference on Machine Learning (ICML’03).

SREBRO, N., RENNIE, J. D. M., AND JAAKOLA, T. S. 2005. Maximum-margin matrix factorization. In
Advances in Neural Information Processing Systems 17, MIT 1329–1336.

STERN, D. H., HERBRICH, R., AND GRAEPEL, T. 2009. Matchbox: Large-scale online Bayesian recommen-
dations. In Proceedings of the 18th International Conference on World Wide Web (WWW’09). ACM, New
York, NY, 111–120.

TAKÁCS, G., PILÁSZY, I., NÉMETH, B., AND TIKK, D. 2009. Scalable collaborative filtering approaches for
large recommender systems. J. Mach. Learn. Res. 10, 623–656.

TUCKER, L. 1966. Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311.
XIONG, L., CHEN, X., HUANG, T.-K., SCHNEIDER, J., AND CARBONELL, J. G. 2010. Temporal collabora-

tive filtering with Bayesian probabilistic tensor factorization. In Proceedings of the SIAM International
Conference on Data Mining (SIAM). 211–222.

ZHANG, N., ZHANG, Y., AND TANG, J. 2009. A tag recommendation system based on contents. In Proceedings
of the ECML-PKDD Discovery Challenge Workshop.

ZHENG, Y. AND XIE, X. 2011. Learning travel recommendations from user-generated gps traces. ACM Trans.
Intell. Syst. Technol. 2, 2:1–2:29.

Received January 2012; revised January 2012; accepted February 2012

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.

